首页> 外文OA文献 >Polar Fusion Technique Analysis for Evaluating the Performances of Image Fusion of Thermal and Visual Images for Human Face Recognition
【2h】

Polar Fusion Technique Analysis for Evaluating the Performances of Image Fusion of Thermal and Visual Images for Human Face Recognition

机译:极化融合技术分析评价图像性能   用于人脸识别的热图像和视觉图像的融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a comparative study of two different methods, which arebased on fusion and polar transformation of visual and thermal images. Here,investigation is done to handle the challenges of face recognition, whichinclude pose variations, changes in facial expression, partial occlusions,variations in illumination, rotation through different angles, change in scaleetc. To overcome these obstacles we have implemented and thoroughly examinedtwo different fusion techniques through rigorous experimentation. In the firstmethod log-polar transformation is applied to the fused images obtained afterfusion of visual and thermal images whereas in second method fusion is appliedon log-polar transformed individual visual and thermal images. After this step,which is thus obtained in one form or another, Principal Component Analysis(PCA) is applied to reduce dimension of the fused images. Log-polar transformedimages are capable of handling complicacies introduced by scaling and rotation.The main objective of employing fusion is to produce a fused image thatprovides more detailed and reliable information, which is capable to overcomethe drawbacks present in the individual visual and thermal face images.Finally, those reduced fused images are classified using a multilayerperceptron neural network. The database used for the experiments conducted hereis Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) databasebenchmark thermal and visual face images. The second method has shown betterperformance, which is 95.71% (maximum) and on an average 93.81% as correctrecognition rate.
机译:本文对两种不同的方法进行了比较研究,这两种方法基于视觉和热图像的融合和极性变换。在这里,进行研究以应对面部识别的挑战,其中包括姿势变化,面部表情变化,部分遮挡,照明变化,通过不同角度旋转,比例变化等。为了克服这些障碍,我们已经通过严格的实验实施并彻底检查了两种不同的融合技术。在第一方法中,对数极性变换被应用于视觉和热图像的融合之后获得的融合图像,而在第二种方法中,融合被应用于对数极性变换的单个视觉和热图像。在以一种或另一种形式获得的此步骤之后,应用主成分分析(PCA)来减小融合图像的尺寸。对数极变换图像能够处理缩放和旋转带来的复杂性。使用融合的主要目的是生成提供更详细和可靠信息的融合图像,该融合图像能够克服单个视觉和热敏面部图像中存在的缺点。最后,使用多层感知器神经网络对那些缩小的融合图像进行分类。用于此处进行的实验的数据库是“超出可见光谱的对象跟踪和分类”(OTCBVS)数据库,用于对人脸和视觉人脸图像进行基准测试。第二种方法表现出更好的性能,最高识别率为95.71%,平均识别率平均为93.81%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号